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STA5002: Mathematical Statistics 

Assignment 3 Solution (Dec 4th – Dec13th) 

 

Note: The solutions only serve as a reference. Some problems may have different methods to 

reach the same answer. 

 

1. Randomly generate two independent samples from population 𝑁(100, 4)   the sample 

means of the two samples are denoted by �̅�1 and �̅�2  respectively. The sample sizes are 

20 and 25  compute 𝑃(|�̅�1 − �̅�2| > 0.1). (5 points) 

Solution: By the description of the problem  we know that �̅�1~𝑁(100, 4/20)  and 

�̅�2~𝑁(100, 4/25). Since the two samples are independent  �̅�1 and �̅�2 are independent 

and 

�̅�1 − �̅�2~𝑁 (0,
4

20
+

4

25
) = 𝑁 (0,

9

25
). 

Therefore: 

𝑃(|�̅�1 − �̅�2| > 0.1) = 𝑃 (
|�̅�1 − �̅�2|

3/5
>

0.1

3/5
) = 𝑃 (|𝑍| >

1

6
) ≈ 2[1 − Φ(0.17)] = 0.8650. 

2. Suppose that 𝑋1, 𝑋2, … , 𝑋15 is a sample from population 𝑋~𝑁(0, 𝜎2)  define 

𝑌 =
𝑋1

2 + 𝑋2
2 + ⋯ + 𝑋10

2

2(𝑋11
2 + 𝑋12

2 + ⋯ + 𝑋15
2 )

. 

Compute 𝑃(𝑌 > 1). (5 points) 

Solution: It is obvious that 𝑋𝑖/𝜎 are i.i.d. random variables which follow the standard 

normal distribution. So  

𝑋1
2 + 𝑋2

2 + ⋯ + 𝑋10
2

𝜎2
~𝒳2(10),

𝑋11
2 + 𝑋12

2 + ⋯ + 𝑋15
2

𝜎2
~𝒳2(5), 

moreover  the two terms are independent. Therefore: 

𝑌 =
𝑋1

2 + 𝑋2
2 + ⋯ + 𝑋10

2

2(𝑋11
2 + 𝑋12

2 + ⋯ + 𝑋15
2 )

=

1
𝜎2 (𝑋1

2 + 𝑋2
2 + ⋯ + 𝑋10

2 )/10

1
𝜎2 (𝑋11

2 + 𝑋12
2 + ⋯ + 𝑋15

2 )/5
~𝐹(10, 5). 

Using R  we have: 

𝑃(𝑌 > 1) ≈ 1 − 0.4651 = 0.5349. 
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3. Suppose that 𝑋1, 𝑋2, … , 𝑋𝑛, 𝑋𝑛+1 is a sample from population 𝑋~𝑁(𝜇, 𝜎2). Let 

�̅�𝑛 =
1

𝑛
∑ 𝑋𝑖

𝑛

𝑖=1

, 𝑆𝑛
2 =

1

𝑛 − 1
∑(𝑋𝑖 − �̅�𝑛)2

𝑛

𝑖=1

. 

Compute constant 𝑐  such that 𝑇𝑐 = 𝑐(𝑋𝑛+1 − �̅�𝑛)/𝑆𝑛  follows a 𝑡 − distribution and 

specify the degree of freedom of the 𝑡 −distribution. (10 points) 

Solution: By the description of the problem  we have  

𝑋𝑛+1~𝑁(𝜇, 𝜎2), �̅�𝑛~𝑁 (𝜇,
𝜎2

𝑛
) ,

(𝑛 − 1)𝑆𝑛
2

𝜎2
~𝒳2(𝑛 − 1), 

and 𝑋𝑛+1, �̅�𝑛, 𝑆𝑛
2 are independent. Therefore 

𝑋𝑛+1 − �̅�𝑛~𝑁 (0, 𝜎2 +
𝜎2

𝑛
) = 𝑁 (0,

𝑛 + 1

𝑛
𝜎2) 

⟹ 𝑇 =
(𝑋𝑛+1 − �̅�𝑛)/√𝑛 + 1

𝑛 𝜎2

√(𝑛 − 1)𝑆𝑛
2

𝜎2 /(𝑛 − 1)

= √
𝑛

𝑛 + 1

(𝑋𝑛+1 − �̅�𝑛)

𝑆𝑛
~𝑡(𝑛 − 1). 

This indicates that when 𝑐 = √𝑛/(𝑛 + 1)   𝑇𝑐 = 𝑐(𝑋𝑛+1 − �̅�𝑛)/𝑆𝑛  follows a 𝑡  

distribution and the degree of freedom is 𝑛 − 1. 

 

4. Suppose that 𝑋1, 𝑋2, … , 𝑋𝑛  is a sample from population 𝑋~𝑈[𝜃1, 𝜃2](𝜃2 > 𝜃1) . Try to 

obtain the sufficient statistic of (𝜃1, 𝜃2). (10 points) 

Solution: The joint PDF of 𝑿 = (𝑋1, 𝑋2, … , 𝑋𝑛) is 

𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑛; 𝜃1, 𝜃2) = 𝑓(𝒙; 𝜃1, 𝜃2)

= {
(

1

𝜃2 − 𝜃1
)

𝑛

, if 𝜃1 ≤ 𝑥1, 𝑥2, … , 𝑥𝑛 ≤ 𝜃2  

0,                                               otherwise

= {
(

1

𝜃2 − 𝜃1
)

𝑛

, if 𝜃1 ≤ 𝑥(1) ≤ 𝑥(𝑛) ≤ 𝜃2  

0,                                               otherwise

. 

Let 𝑇1 = 𝑇1(𝑿) = 𝑋(1)  𝑇2 = 𝑇2(𝑿) = 𝑋(𝑛)  ℎ(𝒙) = 1  and (𝐼(⋅) is the indicator function) 

𝑔(𝑇1, 𝑇2, 𝜃1, 𝜃2) = (
1

𝜃2 − 𝜃1
)

𝑛

𝐼(𝜃1 ≤ 𝑇1 ≤ 𝑇2 ≤ 𝜃2), 

then 𝑓(𝒙; 𝜃1, 𝜃2) = 𝑔(𝑇1, 𝑇2, 𝜃1, 𝜃2)ℎ(𝒙) . By the factorization theorem  𝑻 = (𝑇1, 𝑇2) =
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(𝑋(1), 𝑋(𝑛)) is a sufficient statistic of (𝜃1, 𝜃2). 

 

5. For each of the following PDFs  assume 𝑋1, 𝑋2, … , 𝑋𝑛 is a sample from each PDF  compute 

the moment estimators of the unknown parameters. 

(1) 𝑓(𝑥; 𝜃) = (𝜃 + 1)𝑥𝜃  0 < 𝑥 < 1, 𝜃 > 0. (5 points) 

(2) 𝑓(𝑥; 𝜃, 𝜇) = exp{−(𝑥 − 𝜇)/𝜃} /𝜃  𝑥 > 𝜇  𝜃 > 0. (5 points) 

Solution: 

(1) Compute the population 1st moment of 𝑋~𝑓(𝑥; 𝜃): 

𝐸(𝑋) = ∫ 𝑥(𝜃 + 1)𝑥𝜃𝑑𝑥
1

0

= (𝜃 + 1) ∫ 𝑥𝜃+1𝑑𝑥
1

0

=
𝜃 + 1

𝜃 + 2
. 

⟹ 𝜃 =
1 − 2𝐸(𝑋)

𝐸(𝑋) − 1
 ⟹ moment estimator of 𝜃 is �̂� =

1 − 2�̅�

�̅� − 1
. 

(2) Compute the population 1st and 2nd moments of 𝑋~𝑓(𝑥; 𝜃, 𝜇): 

𝐸(𝑋) = ∫
𝑥

𝜃
exp {−

𝑥 − 𝜇

𝜃
} 𝑑𝑥

∞

𝜇

=
1

𝜃
[∫ 𝑡𝑒−

𝑡
𝜃𝑑𝑡

∞

0

+ 𝜇 ∫ 𝑒−
𝑡
𝜃𝑑𝑡

∞

0

] = 𝜃 + 𝜇. 

𝐸(𝑋2) = ∫
𝑥2

𝜃
exp {−

𝑥 − 𝜇

𝜃
} 𝑑𝑥

∞

𝜇

=
1

𝜃
∫ (𝑡 + 𝜇)2𝑒−

𝑡
𝜃𝑑𝑡

∞

0

=
1

𝜃
[∫ 𝑡2𝑒−

𝑡
𝜃𝑑𝑡

∞

0

+ 2𝜇 ∫ 𝑡𝑒−
𝑡
𝜃𝑑𝑡

∞

0

+ 𝜇2 ∫ 𝑒−
𝑡
𝜃𝑑𝑡

∞

0

]

= 2𝜃2 + 2𝜇𝜃 + 𝜇2. 

⟹ Var(𝑋) = 𝐸(𝑋2) − [𝐸(𝑋)]2 = (2𝜃2 + 2𝜇𝜃 + 𝜇2) − (𝜃 + 𝜇)2 = 𝜃2. 

⟹ 𝜃 = √Var(𝑋), 𝜇 = 𝐸(𝑋) − √Var(𝑋). 

Therefore  the moment estimators of 𝜃 and 𝜇 are: 

𝜃 = �̃�, �̂� = �̅� − �̃�. 

 

6. Suppose that the number of words in a sentence from a book 𝑋 approximately follows a 

log normal distribution  i.e.  𝑌 = ln 𝑋 ~𝑁(𝜇, 𝜎2). 20 sentences are randomly picked from 

the book and the number of words in them are 

50 13 13 61 14 5 26 5 8 57 
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28 4 27 12 31 30 24 20 65 22 

Compute the maximum likelihood estimate of 𝜃 = 𝐸(𝑋) = 𝑒𝜇+𝜎2/2  the expected number 

of words of a sentence from the book. (10 points) 

Solution: The maximum likelihood estimators of 𝜇 and 𝜎2 of 𝑁(𝜇, 𝜎2) are the sample 

mean and adjusted sample variance. So  the estimates are 

�̂� =
1

20
∑ 𝑦𝑖

20

𝑖=1

=
1

20
∑ ln 𝑥𝑖

20

𝑖=1

≈ 2.9582. 

�̂�2 =
1

20
∑(𝑦𝑖 − 2.9582)2

20

𝑖=1

=
1

20
∑(ln 𝑥𝑖 − 2.9582)2

20

𝑖=1

≈ 0.6622. 

Due to the invariance property of MLE  the MLE of 𝜃 = 𝐸(𝑋) = 𝑒𝜇+𝜎2/2 is 

𝜃 = 𝑒2.9582+0.6622/2 ≈ 26.8241. 

 

7. Assume that 𝑋1, 𝑋2, … , 𝑋𝑛 is a sample from population 𝑋 with PDF 𝑓(𝑥; 𝜃) = 𝜃𝑥𝜃−1  

0 < 𝑥 < 1  𝜃 > 0.  

(1) Compute the maximum likelihood estimator of 𝑔(𝜃) = 1/𝜃. (5 points) 

(2) Compute the C R lower bound of any unbiased estimator of 𝑔(𝜃) and show that the 

estimator in (1) is an efficient estimator of 𝑔(𝜃). (5 points) 

Solution:  

(1) The likelihood function is 

𝐿(𝜃; 𝒙) = (𝜃)𝑛(𝑥1𝑥2 ⋯ 𝑥𝑛)𝜃−1. 

So  the log likelihood function is 

ℓ(𝜃; 𝒙) = 𝑛 ln 𝜃 + (𝜃 − 1)(ln 𝑥1 + ln 𝑥2 + ⋯ + ln 𝑥𝑛). 

Take the first derivative of ℓ(𝜃)  set it to zero and solve the equation: 

𝜕ℓ

𝜕𝜃
=

𝑛

𝜃
+ ∑ ln 𝑥𝑖

𝑛

𝑖=1

= 0 ⟹ 𝜃 = −
𝑛

∑ ln 𝑥𝑖
𝑛
𝑖=1

. 

Consider the second derivative of ℓ evaluated at 𝜃: 

𝜕2ℓ

𝜕𝜃2
|

�̂�

= (−
𝑛

𝜃2
)|

�̂�
= −

𝑛

𝜃2
< 0. 

So  𝜃 is the maximum likelihood estimator of 𝜃. By the invariance property of MLE  
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the MLE of 𝑔(𝜃) = 1/𝜃 is 

�̂� = −
1

𝑛
∑ ln 𝑋𝑖

𝑛

𝑖=1

. 

(2) First compute the fisher information of 𝜃  since ln 𝑓(𝑥; 𝜃) = ln 𝜃 + (𝜃 − 1) ln 𝑥  so: 

𝜕 ln 𝑓(𝑥; 𝜃)

𝜕𝜃
=

1

𝜃
+ ln 𝑥 ,

𝜕2 ln 𝑓(𝑥; 𝜃)

𝜕𝜃2
= −

1

𝜃2
. 

⟹ 𝐼(𝜃) = −𝐸 (
𝜕2 ln 𝑓(𝑋; 𝜃)

𝜕𝜃2
) =

1

𝜃2
. 

Since 𝑔(𝜃) = 1/𝜃   so 𝑔′(𝜃) = −1/𝜃2   consequently  the C R lower bound of any 

unbiased estimator of 𝑔(𝜃) is 

[𝑔′(𝜃)]2

𝑛𝐼(𝜃)
=

1

𝑛𝜃2
. 

Then compute the expectation and variance of �̂� in (1). Let 𝑌 = − ln 𝑋  then 

𝑃(𝑌 < 𝑦) = 𝑃(− ln 𝑋 < 𝑦) = 𝑃(𝑋 > 𝑒−𝑦) = ∫ 𝜃𝑥𝜃−1𝑑𝑥
1

𝑒−𝑦

= 1 − 𝑒−𝜃𝑦. 

So  𝑌~𝐸𝑥𝑝(𝜃)  ⟹ 𝐸(𝑌) = 1/𝜃 and Var(𝑌) = 1/𝜃2  consequently: 

𝐸(�̂�) =
1

𝑛
∑ 𝐸(− ln 𝑋𝑖)

𝑛

𝑖=1

= 𝐸(𝑌) =
1

𝜃
, Var(�̂�) =

1

𝑛2
∑ Var(ln 𝑋𝑖)

𝑛

𝑖=1

=
1

𝑛
Var(𝑌) =

1

𝑛𝜃2
. 

This indicate that �̂� is an unbiased estimator of 𝑔(𝜃) = 1/𝜃 and it attains the C R 

lower bound. So �̂� is an efficient estimator of 𝑔(𝜃). 

 

8. Assume that 𝑋1, 𝑋2, … , 𝑋𝑛  is a sample from population 𝑋  with PDF 𝑓(𝑥|𝜃) = 𝜃𝑥𝜃−1   

0 < 𝑥 < 1   𝜃 > 0 . Let the prior distribution of 𝜃  be the Gamma distribution  i.e.  

𝜃~𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽)  compute the posterior expectation as the Bayes’ estimator of 𝜃. (Hint: 

∫ 𝑥𝛼−1𝑒−𝑥𝑑𝑥 = Γ(𝛼)
∞

0
  the expectation of 𝑌~𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) is 𝐸(𝑌) = 𝛼/𝛽) (10 points) 

Solution: The joint distribution of 𝑋1, 𝑋2, … , 𝑋𝑛 and 𝜃 is 
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𝑓(𝑥1, 𝑥2, … , 𝑥𝑛, 𝜃) =
𝛽𝛼

Γ(𝛼)
𝜃𝛼−1𝑒−𝛽𝜃 ⋅ ∏ 𝜃𝑥𝑖

𝜃−1

𝑛

𝑖=1

=
𝛽𝛼

Γ(𝛼)
𝜃𝑛+𝛼−1 exp {−𝜃 (𝛽 − ∑ ln 𝑥𝑖

𝑛

𝑖=1

)} ∏
1

𝑥𝑖

𝑛

𝑖=1

. 

Then (for the second “=”  set �̃� = (𝛽 − ∑ ln 𝑥𝑖
𝑛
𝑖=1 )𝜃) 

∫ 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛, 𝜃)𝑑𝜃
∞

0

=
𝛽𝛼

Γ(𝛼)
∏

1

𝑥𝑖

𝑛

𝑖=1

∫ 𝜃𝑛+𝛼−1 exp {−𝜃 (𝛽 − ∑ ln 𝑥𝑖

𝑛

𝑖=1

)} 𝑑𝜃
+∞

0

=
𝛽𝛼

Γ(𝛼)
∏

1

𝑥𝑖
(𝛽 − ∑ ln 𝑥𝑖

𝑛

𝑖=1

)

−(𝑛+𝛼)𝑛

𝑖=1

∫ �̃�𝑛+𝛼−1 exp{−�̃�} 𝑑�̃�
+∞

0

=
𝛽𝛼

Γ(𝛼)
∏

1

𝑥𝑖
(𝛽 − ∑ ln 𝑥𝑖

𝑛

𝑖=1

)

−(𝑛+𝛼)𝑛

𝑖=1

Γ(𝑛 + 𝛼) 

Therefore  the posterior distribution of 𝜃 is 

𝜋(𝜃|𝑥1, 𝑥2, … , 𝑥𝑛) =
𝑓(𝑥1, 𝑥2, … , 𝑥𝑛, 𝜃)

∫ 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛, 𝜃)𝑑𝜃
∞

0

=
(𝛽 − ∑ ln 𝑥𝑖

𝑛
𝑖=1 )𝑛+𝛼

Γ(𝑛 + 𝛼)
𝜃𝑛+𝛼−1 exp {−𝜃 (𝛽 − ∑ ln 𝑥𝑖

𝑛

𝑖=1

)}. 

It is not difficult to see that it is the Gamma distribution 𝐺𝑎𝑚𝑚𝑎(𝑛 + 𝛼, 𝛽 − ∑ ln 𝑥𝑖
𝑛
𝑖=1 ). 

Then the posterior expectation as the Bayes’ estimator of 𝜃 is 

𝜃𝐵 =
𝑛 + 𝛼

𝛽 − ∑ ln 𝑥𝑖
𝑛
𝑖=1

. 

 

9. It is assumed that the compressive strength (抗压强度) of a type of material is 𝑋~𝑁(𝜇, 𝜎2). 

Now randomly pick 10 test piece and perform the compression test (抗压试验 )  the 

compressive strengths are: 479  490  454  468  507  443  432  415  396  466. 

(1) If it is known that 𝜎 = 30  compute the 95% confidence interval of 𝜇. (5 points) 

(2) Compute the 95% confidence interval of 𝜇 assuming 𝜎2 is unknown. (5 points) 

(3) Compute the 95% confidence interval of 𝜎. (5 points) 

Solution: 

(1) The sample mean is computed to be �̅� = 455  the 100(1 − 𝛼)% confidence interval 

of 𝜇 when 𝜎 is known is: 
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�̅� ± 𝑢1−𝛼/2

𝜎

√𝑛
. 

Plugging in �̅� = 455   𝜎 = 30   𝑛 = 10  and 𝑢0.975 = 1.96   we obtain the 95% 

confidence interval of 𝜇 to be [436.4058, 473.5942]. 

(2) By computation  the sample mean and sample variance are �̅� = 455  𝑠2 = 1172.222  

so the sample standard deviation is 𝑠 ≈ 34.24 . hhen 𝜎  is unknown  the 100(1 −

𝛼)% confidence interval of 𝜇 is 

�̅� ± 𝑡1−𝛼/2(𝑛 − 1)
𝑆

√𝑛
. 

Plugging in �̅� = 455  𝑠 = 34.24  𝑛 = 10 and 𝑡0.975(9) = 2.262  we obtain the 95% 

confidence interval of 𝜇 to be [430.5095, 479.4905]. 

(3) The 100(1 − 𝛼)% confidence interval of 𝜎2 is 

[
(𝑛 − 1)𝑆2

𝒳1−𝛼/2
2 (𝑛 − 1)

 ,
(𝑛 − 1)𝑆2

𝒳𝛼/2
2 (𝑛 − 1)

]. 

From the chi square distribution table  we have 𝒳0.025
2 (9) = 2.700   𝒳0.975

2 (9) =

19.02. Plugging in (𝑛 − 1)𝑠2 = 10550  the 95% confidence interval for 𝜎2 is  

[
10550

19.02
,
10550

2.700
] ≈ [554.679, 3907.407]. 

The 95% confidence interval for 𝜎 is then [√554.679, √3907.407] ≈ [23.552, 62.509]. 

 

10. Assume that population 𝑋~𝑁(𝜇1, 𝜎1
2)  and population 𝑌~𝑁(𝜇2, 𝜎2

2) . Two independent 

samples with sample sizes 𝑛1 = 10  𝑛2 = 13 are obtained from the two populations  the 

sample means and variances are computed as �̅� = 82  𝑠1
2 = 56.5  �̅� = 76  𝑠2

2 = 52.4.  

(1) If it is known that 𝜎1
2 = 64  𝜎2

2 = 49  compute the 95% confidence interval of 𝜇1 −

𝜇2. (5 points) 

(2) If it is known that 𝜎1
2 = 𝜎2

2  compute the 95% confidence interval of 𝜇1 − 𝜇2. (5 points) 

(3) Compute the 95% confidence interval of 𝜎1
2/𝜎2

2. (5 points) 

Solution:  

(1) hhen 𝜎1
2 and 𝜎2

2 are known  the 100(1 − 𝛼)% confidence interval is 

(�̅� − �̅�) ± 𝑢1−𝛼/2√
𝜎1

2

𝑛1
+

𝜎2
2

𝑛2
. 
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Plugging in that �̅�   �̅�   𝑢0.975 = 1.96   𝜎1
2 = 64   𝜎2

2 = 49   the 95% confidence 

interval of 𝜇1 − 𝜇2 is 

(82 − 76) ± 1.96 × √
64

10
+

49

13
= [−0.2503, 12.2503]. 

(2) If 𝜎1
2 = 𝜎2

2  the 100(1 − 𝛼)% confidence interval of 𝜇1 − 𝜇2 is 

(�̅� − �̅�) ± 𝑡1−𝛼/2(𝑛1 + 𝑛2 − 2)𝑆𝜔√
1

𝑛1
+

1

𝑛2
, 

where  

𝑆𝜔
2 =

(𝑛1 − 1)𝑆1
2 + (𝑛2 − 1)𝑆2

2

𝑛1 + 𝑛2 − 2
. 

Plugging in 𝑛1 = 10   𝑛2 = 13   𝑠1
2 = 56.5   𝑠2

2 = 52.4   we have 𝑠𝜔
2 = 54.1571 . 

Moreover  from the t distribution table  𝑡0.975(21) = 2.080   so the 95% confidence 

interval for 𝜇1 − 𝜇2 is 

(82 − 76) ± 2.080 × √54.1571 × √
1

10
+

1

13
= [−0.4385, 12.4385]. 

(3) The 100(1 − 𝛼)% confidence interval for 𝜎1
2/𝜎2

2 is 

[
𝑆1

2

𝑆2
2 ⋅

1

𝐹1−𝛼/2(𝑛1 − 1, 𝑛2 − 1)
,
𝑆1

2

𝑆2
2 ⋅

1

𝐹𝛼/2(𝑛1 − 1, 𝑛2 − 1)
]. 

From the F square distribution table  we have 𝐹0.975(9, 12) = 3.44   𝐹0.975(12, 9) =

3.87. By the triple reverse formula   

𝐹0.025(9, 12) =
1

𝐹0.975(12, 9)
=

1

3.87
. 

Plugging in 𝑠1
2 = 56.5   𝑠2

2 = 52.4   𝐹0.025(9, 12) = 1/3.87   𝐹0.975(9, 12) = 3.44   

the 95% confidence interval of 𝜎1
2/𝜎2

2 is 

[
56.5

52.4
⋅

1

3.44
,
56.5

52.4
⋅ 3.87] = [0.3134, 4.1728]. 


