控制工程基础与设计

(付敏跃)SDM3142023秋  
2023秋
(暂无评价)
  • 课程难度:你猜
  • 作业多少:你猜
  • 给分好坏:你猜
  • 收获大小:你猜
选课类别:专业任务 教学语言:双语
课程类别:专业核心课 开课单位:系统设计与智能制造学院
课程层次:本科 获得学分:3.0
课程主页:暂无(如果你知道,请点右上角“编辑课程信息”添加!)
课程简介(教工部数据)
本课程介绍了设计和分析反馈系统的基本原理和工具。它旨在为有兴趣了解和利用物理、生物、信息和社会系统中的反馈控制原理的学生提供较为全面的信息渠道和专业训练。本课程的主要目标是对反馈和控制系统中的知识提供一个简洁而不失深度的观点。在开发本课程时,我们试图通过强调基本概念来浓缩不断膨胀的自动控制知识体系。 重要的是要培养学生理解为什么反馈有用,了解控制的语言和基本数学工具,并掌握过去半个世纪控制理论发展史上的关键范例。课程通过作业、MATLAB仿真、实验、项目等手段培养学生有效利用快速的定性分析解决简单的反馈问题,对控制系统的基本局限性等抽象概念形成内化的理解。知识点包括: 简介和课程概述–自动控制,使用原因和地点(示例)的主要概念概述:反馈与开环控制,性能度量,模拟和数字控制。 拉普拉斯(Laplace)变换–回顾方法和标准结果,线性微分方程,传递函数,框图的解决方案。 动态模型及属性–系统模型的微分方程,传递函数,状态空间形式;类型之间的转换;框图和原型反馈控制系统,性能指标,标准的一阶、二阶系统,脉冲和阶跃响应,极点和零点的影响,稳态误差。 PID控制–定义,比例增益、积分增益和微分增益的影响,简单情况下的增益选择,Ziegler-Nichols方法。 根轨迹方法–特征方程,根轨迹(RL)的定义,绘制RL的规则,使用根轨迹技术的控制系统设计,超前和滞后补偿器,Matlab RLTOOL,预补偿器和灵敏度函数。 频率响应方法–频率响应函数,波特图,奈奎斯特图,稳定性条件,增益和相位裕量,相对稳定性,M圆,超前/滞后补偿器设计。 状态空间控制–稳定性,全状态反馈,可控制性,控制规范形式,极点位置,状态观测器,观测器规范形式和观测器极点位置,以及线性最优控制的介绍。该课程广泛使用Matlab来表示和模拟控制系统。课程中包含有关控制系统设计的小组最终项目;利用Matlab和Simulink进行仿真和设计。


This course introduces the basic principles and tools for the design and analysis of feedback systems. It is intended to serve a diverse audience of scientists and engineers who are interested in understanding and utilizing feedback in physical, biological, information and social systems. A major goal of this course is to present a concise and insightful view of the current knowledge in feedback and control systems. In developing this course, we have attempted to condense the current knowledge by emphasizing fundamental concepts. We believe that it is important to understand why feedback is useful, to know the language and basic mathematics of control and to grasp the key paradigms that have been developed over the past half century. It is also important to be able to solve simple feedback problems using back-of-the-envelope techniques, to recognize fundamental limitations and difficult control problems and to have a feel for available design methods.Topics include: Introduction and course overview – automatic control, why and where is it used (examples) overview of main concepts: feedback vs. open loop control, performance measures, analogue and digital control. Laplace transforms – review of methods and standard results, especially the solution of linear differential equations, transfer functions, block diagrams. Dynamic modeling and model properties - differential equations, transfer functions, state-space forms of system models; conversion between types; block diagrams and prototype feedback control systems, performance metrics, standard first-order and second-order systems, impulse and step responses, effect of poles and zeros, steady-state error. PID control – definition, effects of the proportional, integral and derivative terms, choice of gains in simple cases, Ziegler-Nichols methods. Root locus methods – characteristic equation, definition of the root locus (RL), rules for sketching the RL, control system design using root locus techniques, lead and lag compensators, Matlab RLTOOL, pre-compensators and sensitivity function. Frequency response methods – frequency response function, Bode plots, Nyquist plots, stability conditions, gain and phase margins, relative stability, M-circles, lead/lag compensator designs. State-space control – stability, full state feedback, controllability, control canonical form, pole placement, state observer, observer canonical form and placement of observer poles, introduction to linear optimal control. The course makes wide use of Matlab to represent and simulate control systems. A group final project on control system design is included in the course; this makes use of Matlab and Simulink for simulation and design.
点评写点评

还没有评论耶!放着我来!

teacher avatar

付敏跃

系统设计与智能制造学院

暂无教师主页

其他老师的「控制工程基础与设计」课

付敏跃老师的其他课