随机过程

(洪杰梁)MAT70922024秋 2024春  
2024秋 2024春
(暂无评价)
  • 课程难度:你猜
  • 作业多少:你猜
  • 给分好坏:你猜
  • 收获大小:你猜
选课类别:专业任务 教学语言:英文
课程类别:专业选修课 开课单位:数学系
课程层次:未知 获得学分:3.0
课程主页:暂无(如果你知道,请点右上角“编辑课程信息”添加!)
课程简介(教工部数据)
 随机过程作为概率论的一个重要分支,它是研究随机现象随时间变化规律性的数学工具,是随机系列课程的重要组成部分。它来源于实际,具有深刻的应用背景,它可广泛应用于金融学、经济与管理科学、信息科学、生物科学、计算机科学以及其他工程技术领域。随机过程本身也是今后学习随机分析和数理金融的重要基础。本课程从鞅开始,依次介绍鞅的定义、停时、鞅收敛定理等;其次介绍马尔科夫链的定义及其平稳测度、遍历定理等;最后我们介绍布朗运动的构造、维纳测度、以及布朗运动在偏微分方程等的应用。学习完本课程后,学生应了解并掌握随机过程的基本概念和结论;掌握鞅和停时的定义以及收敛定理;了解马尔科夫过程的定义和相关概念;掌握布朗运动的定义和性质,了解布朗运动在现代概率论中的广泛应用。


As an important branch of probability theory, stochastic process is a mathematical tool for studying the regularity of random phenomena over time and an important part of the random series of courses. It comes from reality and has a profound application background. It can be widely used in finance, economics and management science, information science, biological science, computer science and other engineering technology fields. The stochastic process itself is also an important foundation for studying stochastic analysis and mathematical finance in the future. This course starts with the martingale. We introduce the definition of martingale, stopping times and the martingale convergence theorems. Next, we study the definitions of Markov chain, and introduce the invariant measure and ergodic theorems. Finally, we contruct the Brownian motion, introduce the Wiener measure and discuss the applications of Brownian motion in partial differential equations. After completing this course, students should understand and master the basic concepts and conclusions of stochastic processes; master the definitions of martigale and stopping times, and the associated convergence theorems; master the definition and properties of Markov processes; master the definitions and properties of the Brownian motion and understand the wide applications of Brownian motion in modern probability theory.
点评写点评

还没有评论耶!放着我来!

teacher avatar

洪杰梁

数学系

暂无教师主页

其他老师的「随机过程」课

洪杰梁老师的其他课